首页> 外文OA文献 >A functional renormalization group approach to electronic structure calculations for systems without translational symmetry
【2h】

A functional renormalization group approach to electronic structure calculations for systems without translational symmetry

机译:功能重整化群方法的电子结构   没有平移对称性的系统的计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A formalism for electronic-structure calculations is presented that is basedon the functional renormalization group (FRG). The traditional FRG has beenformulated for systems that exhibit a translational symmetry with an associatedFermi surface, which can provide the organization principle for therenormalization group (RG) procedure. We here advance an alternativeformulation, where the RG-flow is organized in the energy-domain rather than ink-space. This has the advantage that it can also be applied to inhomogeneousmatter lacking a band-structure, such as disordered metals or molecules. Theenergy-domain FRG ({\epsilon}FRG) presented here accounts for Fermi-liquidcorrections to quasi-particle energies and particle-hole excitations. It goesbeyond the state of the art GW-BSE, because in {\epsilon}FRG the Bethe-Salpeterequation (BSE) is solved in a self-consistent manner. An efficientimplementation of the approach that has been tested against exactdiagonalization calculations and calculations based on the density matrixrenormalization group is presented. Similar to the conventional FRG, also the {\epsilon}FRG is able to signalizethe vicinity of an instability of the Fermi-liquid fixed point via runaway flowof the corresponding interaction vertex. Embarking upon this fact, in anapplication of {\epsilon}FRG to the spinless disordered Hubbard model wecalculate its phase-boundary in the plane spanned by the interaction anddisorder strength. Finally, an extension of the approach to finite temperaturesand spin S = 1/2 is also given.
机译:提出了一种基于功能重整化组(FRG)的电子结构计算形式。已经针对具有相关联的费米表面的平移对称性的系统制定了传统的FRG,这可以为归一化组(RG)过程提供组织原理。我们在这里提出一种替代公式,其中RG流在能量域而不是在墨水空间中组织。这具有的优点是,它也可以应用于缺乏能带结构的不均匀物质,例如无序的金属或分子。此处介绍的能量域FRG({epsilon} FRG)解释了对准粒子能量和粒子-空穴激发的费米液体校正。它超越了现有技术的GW-BSE,因为在{FR​​} FRG中以自洽的方式解决了Bethe-Salpeterequation(BSE)。提出了一种方法的有效实现,该方法已针对精确对角化计算和基于密度矩阵重新归一化组的计算进行了测试。类似于常规的FRG,{ε} FRG也能够通过相应的相互作用顶点的失控流向费米液体定点的不稳定性附近发出信号。着眼于这一事实,在将{FRS} FRG应用于无刺无序哈伯德模型中时,我们在相互作用和无序强度跨越的平面中计算了其相边界。最后,还给出了扩展到有限温度和自旋S = 1/2的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号